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Modulation of SOX2 expression 
delineates an end-point for 
paclitaxel-effectiveness in breast 
cancer stem cells
Pritha Mukherjee1, Arnab Gupta2, Dhrubajyoti Chattopadhyay3,4 & Urmi Chatterji1,5

Tumor relapse in triple negative breast cancer patients has been implicated to chemoresistant cancer 
stem cells (CSCs), which under favorable conditions culminate in tumor re-formation and metastasis. 
Hence, eradication of CSCs during systemic chemotherapy is imperative. CSCs were sorted using 
immuno-phenotyping and aldefluor assay. Gene expression profiling of normal breast stem cells and 
breast CSCs from chemo-treated patients were carried out. Silencing SOX2 was achieved by siRNA 
method. Mammosphere culture and wound healing assays were carried out to assess efficacy of 
CSCs. Microarray analysis revealed elevated expression of SOX2, ABCG2 and TWIST1, unraveling an 
intertwined pluripotency-chemoresistance-EMT axis. Although paclitaxel treatment led to temporary 
arrest of cell migration, invasiveness resumed after drug removal. The ‘twist in the tale’ was a 
consistently elevated expression of TWIST1, substantiating that TWIST1 can also promote stemness 
and chemoresistance in tumors; hence, its eradication was imperative. Silencing SOX2 increased 
chemo-sensitivity and diminished sphere formation, and led to TWIST1 down regulation. This study 
eventually established that SOX2 silencing of CSCs along with paclitaxel treatment reduced SOX2-
ABCG2-TWIST1 expression, disrupted sphere forming capacity and also reduced invasiveness by 
retaining epithelial-like properties of the cells, thereby suggesting a more comprehensive therapy for 
TNBC patients in future.

On a global scale, breast cancer is the most frequently diagnosed cancer, accounting for 29% of total cancer 
cases, and the leading cause of cancer deaths amongst females1. Data suggests that 1 in 28 women in urban India 
and 1 in 64 women in rural India are at a risk of developing breast cancer2. Despite advances in early detection, 
approximately 30% of all patients often turn up with recurrence of the disease within 2 to 5 years after completion 
of treatment3. To offer treatment with increased efficacy and low toxicity, selective therapies based on molecular 
characteristics of the tumor is therefore necessary to prevent disease relapse3, 4.

Amongst the different types of tumors of the breast, triple negative breast cancers (TNBC) evolved to be of 
prominent occurrence, especially in patients from India and Bangladesh, and now reported to be amongst the 
top contenders of breast cancer cases in the US1, 5, 6. The major caveat in pathologic complete response of TNBC 
is their relatively poor prognosis and high rates of local, regional or distant recurrences7, 8. Tumor relapse may be 
implicated to the meager population of cancer stem cells (CSCs), which contribute to relatively low survival rates 
in these patients9. CSCs constitute self-sustaining cells which under conducive conditions lead to development 
of heterogeneous lineages, and eventually culminate in tumor re-formation and metastasis10, 11. CSCs share many 
properties of normal stem cells (NSCs) including a long lifespan, relative quiescence, and resistance to drugs 
through the expression of drug efflux pumps, an active DNA-repair capacity and resilience to apoptosis. Such a 
population of drug-resistant pluripotent cells can therefore survive chemotherapy and re-populate the tumor12.

The persistence of CSCs through chemotherapy renders them invincible components of tumors. A strong 
relationship exists between pluripotency and chemoresistance, tethered to epithelial-to-mesenchymal transition 
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Figure 1.  Breast cancer stem cells show higher expression of pluripotency genes and chemoresistance marker. 
(A) Immunesorting of normal mammary tissues and breast tumor tissues showing 10.45% cells with CD44+/
CD24− phenotype in tumors as compared to 2.38% in normal tissues (n = 50). (B) Aldefluor assays from 
patient tumors show a higher percentage of ALDH+ cells (6.4%) as compared to normal tissues (0.4%) (n = 50). 
(C) Representative images showing the morphology of primary and secondary mammospheres grown in 
serum-free cultures from TNBC tumors (20X magnification; n = 30). (D) Representative hematoxylin-eosin 
staining of normal mammary tissue and TNBC tumor obtained after MRM surgery from naïve (Tumor) and 
chemo-treated (CT-Tumor) patients. Aldefluor assays show 33.6% ALDH+ cells in the CT-tumor (n = 30). (E) 
Mammospheres formed from sorted normal stem cells (NSC), cancer stem cells from untreated TNBC tumor 
(CSC) and cancer stem cells from TNBC CT-tumor (CT-CSC) after 7 days of culture (20X magnification). 
(F) Expressions of SOX2, OCT4, NANOG, WNT, hTERT and ABCG2 in sorted ALDH+ populations of TNBC 
tumor (CSC) and chemo-treated TNBC tumor (CT-CSC). 18S was used as the endogenous control. The color 
bars represent expression of markers in CSCs (darker bars) versus chemo-treated CSCs (lighter bars) (G) 
Western blot analyses of SOX2, OCT4, NANOG and ABCG2 in breast cancer stem cells isolated from TNBC 
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(EMT)13, 14 which ultimately governs the aggressive nature of TNBCs. High levels of ATP-binding cassette 
(ABC)-transporters in CSCs render them resistant to various chemotherapeutic agents15, 16 and can explain 
resistance and tumor recurrence to traditional anti-cancer drugs. Hence, selective inhibition and/or eradica-
tion of breast cancer stem cells (brCSCs) during systemic chemotherapy would provide TNBC patients a more 
complete therapeutic option. Our aim, therefore, was to define mechanisms that would render the brCSCs more 
receptive to the effects of conventional chemotherapeutic drugs, like paclitaxel (Pax). Since genes other than 
ABC-transporters may participate in development of chemoresistance in CSCs17, 18 identifying additional factors 
that aid ABC-transporters in conferring chemoresistance also need to be identified. In the current study, we have 
shown that silencing SOX2 along with administration of Pax can render the brCSC population less aggressive, 
with regard to chemo-resistance and migration, via modulation of ABCG2 and TWIST1 expression.

Results
Chemotherapy enriches brCSCs in human triple negative breast tumors.  Both immune-sorting 
and aldefluor assays revealed that human breast tumors harboured a higher population of both CD44+/CD24− 
(Fig. 1A) and ALDH+ (aldehyde dehydrogenasehigh) cells (p < 0.001), compared to normal tissues (Fig. 1B). 
Chemo-treated patient tumors (CT-Tumor) showed a higher percentage of ALDH+ cells (73.2%) as compared 
to untreated naïve tumors (14.7%; Supplementary Fig. 1). Immunophenotyping of CD44+/CD24− populations 
in naïve tumors and chemo-treated tumors from patients undergoing MRM in comparison to the normal mam-
mary tissue showed a differential count of this subset in the cancer stem cell population with chemo-treatment 
augmenting their numbers (Supplemenatry Fig. 2). Sphere forming assays with brCSCs from human tumors con-
firmed their self-renewal property. Efficacy of CSCs was further ascertained when primary mammospheres gen-
erated secondary spheres within 6 days of re-seeding the Day 7 primary spheres (Fig. 1C). Interestingly, ALDH+ 
cells elevated enormously (33.6%; p < 0.001) in tumors from TNBC patients who had undergone pre-surgery 
chemotherapy, compared to the untreated patients (6.4%; p < 0.01) (Fig. 1D). The sphere forming efficiency 
was more pronounced in case of CT-CSCs (chemo-treated CSCs) compared to CSCs from untreated patient 
tumors (Supplementary Fig. 3). In addition, the size of mammospheres was larger when derived from chemo-
treated tumors in comparison to the non-chemo treated naïve tumors (Fig. 1E). ALDH+ cells (indicating putative 
brCSCs) from chemo-treated tumors expressed higher levels of stem cell markers compared to ALDH+ cells from 
untreated tumors, both at the transcriptional (Fig. 1F) and translational levels (Fig. 1G). Expressions of SOX2, 
OCT4, WNT, NANOG, ABCG2 and ALDH1A1 was assessed both at transcriptional and translational levels from 
spheroids and sorted populations of CD44+/24− and ALDH+ cells of CT-TNBC tumor (CSC) versus the whole 
tumor (Supplementary Fig. 1).

Paclitaxel treatment augments brCSCs in MDA-MB-231 cells and mammospheres.  To confirm 
the above findings in vitro, we simulated chemo-treatment of human TNBC tissues by treating the MDA-MB-231 
triple negative breast cancer cells and mammospheres formed from MDA-MB-231 cells with Pax. The optimum 
dose of Pax was determined by flow cytometry after exposing the cells to different doses of Pax (1 nM to 6 nM) 
for 48 hours. We observed that 2 nM Pax led to significant (p < 0.01) cell cycle arrest of the monolayer cells at 
the G2/M phase (Fig. 2A). However, Pax did not alter the cell cycle status of mammospheres, since cells of the 
mammospheres which were mostly distributed in the G0/G1 phase, continued to do so even after drug treat-
ment (Fig. 2B). Aldefluor assay of monolayer cells treated with Pax indicated an increase (>5-fold; p < 0.001) 
in ALDH+ cells (Fig. 2C), compared to the untreated cells. Pax treatment of MDA-MB-231 mammospheres led 
to a decrease in size and increase in the number of spheres (Fig. 2D), compared to untreated spheres. To assess 
whether the spheres are essentially formed of CSCs, aldefluor assay of mammospheres prior to and after Pax treat-
ment was carried out. The results showed a 3-fold increase in ALDH+ cells in spheres treated with Pax (p < 0.001) 
(Fig. 2E). This observation conformed to the results of aldefluor assay of mammospheres from untreated and 
chemo-treated human tissues, where chemo-treatment led to an increase (3.5-fold; p < 0.001) in the number of 
ALDH+ cells (Fig. 2F). CD44+/CD24− analysis from MDA-MB-231 spheres with PAX treatment also established 
the contribution of paclitaxel in increasing the CD44+/24− population (Supplementary Fig. 2).

SEM analysis of Pax-treated and untreated spheres indicated that untreated spheres show compact rosette 
arrangement of cells adhered to each other, whereas after drug treatment, the size of the spheres were reduced, 
and the structural integrity and compactness was markedly compromised during sphere formation (Fig. 2G).

Differential gene expression in brCSCs isolated from normal breast tissues and chemo-
treated triple negative breast tumors.  To identify specific genes responsible for enhanced stemness 
of brCSCs harbored within tumors in patients, a DNA microarray was carried out with NSCs and brCSCs from 
chemo-treated TNBC patients. The array determined the levels of differentially expressed genes belonging to 
various functional cohorts. According to data mining from the bioinformatics databases, these genes were linked 
to CSC proliferation, self renewal, pluripotency, asymmetric cell division, migration and metastasis, which helped 
facilitate both CSC characterization, as well as, identify targets of therapeutics currently being tested. A set of 
controls present on this array enabled data analysis using the ∆∆CT method of relative quantification. Using real 
time PCR we analyzed the expression of a focused panel of genes related to stem cells by Log10 RQ using SYBR® 

tumor (CSC) and chemo-treated TNBC tumor (CT-CSC). The color bars represent expression of markers 
in CSCs (darker bars) versus chemo-treated CSCs (lighter bars). Data are expressed as mean ± SEM of three 
independent experiments. Student’s t-test was used to calculate statistical significance. *p < 0.05, **p < 0.01 and 
***p < 0.001.
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Figure 2.  Paclitaxel (Pax) treatment enriches cancer stem cells in MDA-MB-231 cells. (A) Cell cycle analyses 
by flow cytometry of MDA-MB-231 cells showed a G2/M phase arrest after 48 hours of Pax treatment (2 nM). 
Histogram showing the population of MDA-MB-231 cells in G2/M phase after treatment with different doses 
of Pax (1–6 nM). (B) Cell cycle analysis of mammospheres from MDA-MB-231 before and after treatment 
with Pax. (C) Aldefluor analysis of MDA-MB-231 before and after treatment with Pax. (D) Pax-treated 
mammospheres from MDA-MB-231 indicated increase in number and decrease in size of the spheres. Scale 
bar 10 µM. (E) Pax treatment increases the ALDH+ cells in MDA-MB-231 mammospheres (3.3%). (F) Increase 
in the ALDH+ cells (6.4%) were also seen in mammospheres from TNBC CT-tumor (chemo-treated) as 
compared to an untreated tumor (1.8%). (G) Scanning electron microscopy images of mammospheres from 
control and Pax-treated MDA-MB-231 under 2 µm magnification. Data are expressed as mean ± SEM of three 
independent experiments. Student’s t-test was used to calculate statistical significance. *p < 0.05, **p < 0.01 and 
***p < 0.001.
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Figure 3.  Microarray analysis elucidates differentially expressed stem cell-related genes in normal breast stem 
cells (NSC) and breast cancer stem cells from chemo-treated TNBC patients (CT-CSC). (A) Heat Map of the 
96 genes in the RT2 profiler array plate for Cancer Stem Cells showing the fold regulation (log2 fold change) 
of various genes from the chemo-treated CSCs of TNBC tumors normalized to normal stem cells (NSCs) 
from the same patient. (B) A scatter plot showing the normalized expression of all genes on the array between 
CT-CSC and NSC to visualize large gene expression changes. The central line indicates unchanged gene 
expression. (C) Multigroup plots to represent the expression of selected genes from the array with grouping 
under three different functional categories. (D) qRT-PCR analysis for stemness, chemoresistance and EMT 
genes from ALDH + population of normal (NSC) and chemo-treated TNBC tumor (CSC). (E) Expression 
of genes from Pax-treated (+PAX, 2 nM) MDA-MB-231 compared to control cells (−Pax). (F) Expression of 
genes in spheroids cultured from chemo-treated TNBC tumor (CTM) compared to spheroids from untreated 
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green relative quantification assay. DNA microarray analysis demonstrated 84 different genes with log ratios 
of >2. The positive controls, as well the housekeeping genes, were expressed in all samples, while the negative 
controls were not. The heat map of genes with log ratio >2 (Fig. 3A), a scatter plot representing normalized gene 
expression (Fig. 3B), and multigroup plots representing various functional cohorts (Fig. 3C) have been shown.

To confirm the microarray data, differential expression of pluripotency and chemoresistance genes were per-
formed in the following samples: (i) Breast NSCs and brCSCs from chemo-treated human tumors, (ii) Pax treated 
and untreated MDA-MB-231 cells, (iii) mammospheres from non-chemo (NCM) and chemo-treated human tis-
sues (CTM) and (iv) mammospheres from MDA-MB-231 cells treated without and with Pax. Higher expressions 
of SOX2, OCT4, NANOG, WNT, BMI1, ABCG2, ALDH1A1, E-CADHERIN and TWIST1 and lower expressions 
of SLUG, SNAIL1, VIMENTIN and hZEB1 were consistently observed in the brCSCs as compared to NSCs from 
sorted human tissues (Fig. 3D) and MDA-MB-231 monolayer cells treated with Pax (Fig. 3E). Similar results 
were observed in mammospheres that were formed from chemo-treated human tissues (Fig. 3F) and Pax-treated 
mammospheres from MDA-MB-231 cells (Fig. 3G).

SOX2 reiterates stemness in triple negative breast cancer.  Amongst the genes related to pluripo-
tency and stemness, the expression of SOX2 was of significant prominence, especially in mammospheres from 
drug-enriched human triple negative breast tumors and cell lines, as evident in Figs 3F and G. In addition, 
increased SOX2 expression consistently correlated with an enhanced expression of the chemo-resistance marker, 
ABCG2, and the EMT marker, TWIST1 (n = 20; p < 0.001), although the expression of the other EMT markers 
remained significantly low. To reconfirm that increased SOX2 correlated with elevated chemoresistance of the 
CSC population, chemo-treated (CT) tumors were digested and subjected either to adherent or sphere culture. 
We observed that expressions of both SOX2 and ABCG2 were higher in mammospheres as compared to the 
adherent cells (Fig. 4A), indicating enhanced expression of the respective genes in the CSC compartment of 
human tumor tissues. Concomitantly, MDA-MB-231 cells grown as adherent cells versus spheres showed not 
only a higher percentage (4.8% versus 10.6%, respectively) of ALDH+ cells (Fig. 4B), but also increased expres-
sions of both SOX2 and ABCG2 in the spheres (Fig. 4C). To further authenticate that increased SOX2 correlated 
with increased ABCG2, SOX2 was over expressed in MDA-MB-231 cells. The results indicated concomitant 
increase in OCT4, NANOG and ABCG2, together with formation of robust mammospheres within 4 days of 
seeding (Fig. 4D). Next, to substantiate the association of SOX2 with expression of TWIST1 and the other mes-
enchymal markers, wound healing assays were carried out with MDA-MB-231 cells in the absence (control) and 
presence (Pax) of drug treatment. Our results indicated that Pax treatment retarded cell migration, thereby reduc-
ing wound healing in triple negative breast cancer cells, compared to untreated cells (Fig. 4E). Concomitantly, 
the expression of SOX2 and EMT markers in cells undergoing migration versus those that were retarded by Pax 
after 24 hours of instilling the wound revealed that SOX2 was consistently over expressed in cells treated with 
Pax (as also observed in Fig. 3E). As expected, expression of the EMT markers viz., h-ZEB1, SLUG, SNAIL1 and 
VIMENTIN were reduced with an increased expression of E-CADHERIN (Fig. 4F). Interestingly, the expression 
of TWIST1 remained high. On removal of the drug, simulating a post-chemotherapy condition, and incubation 
for another 24 hours, we observed recovery of invasiveness of the Pax-retarded cells, along with increased expres-
sion of hZEB-1, SLUG, SNAIL1 and VIMENTIN and reduced expression of E-CADHERIN and SOX2. There was, 
however, no change in expression of TWIST1, which remained significantly high (Fig. 4G).

Silencing SOX2 reduces chemoresistance of breast cancer stem cells in vitro.  Since SOX2 over 
expression consistently correlated with higher expression of ABCG2, we additionally ratified a direct relation-
ship between pluripotency and drug resistance. Consequently, SOX2 was silenced in mammospheres, formed 
from human tumor tissues (Fig. 5A) which resulted in down regulation of OCT4, NANOG, ALDH1A1, and 
most importantly, ABCG2 expression (Fig. 5B; p < 0.01), confirming a direct correlation of SOX2 with ABCG2. 
Silencing SOX2 in TNBC cells impaired their ability of generating spheroids, indicating loss of self-renewal 
capacity in the in vitro system (Supplementary Fig. 4). SOX2 silencing in mammospheres also significantly 
reduced formation of spheres, indicating diminished self-renewal capacity of the brCSCs (Fig. 5B). Combined 
effects of silencing SOX2 and Pax treatment on mammospheres indicated that contrary to Pax treatment of unsi-
lenced mammospheres, SOX2-silenced mammospheres from human tumor tissues treated with Pax showed sig-
nificantly reduced expressions of ABCG2, OCT4, NANOG and ALDH1A1, concomitant with degradation of 
silenced mammospheres (Fig. 5C, p < 0.01).

That SOX2 plays an important role in chemo-resistance of cancer stem cells was further demonstrated by 
chemo-sensitivity assays of control and silenced spheres, which were exposed to different concentrations of Pax. 
MTT assays revealed that the IC50 of Pax in MDA-MB-231 cells was 7 nM (Fig. 5D), which was equivalent to 
mammospheres transfected with scrambled siRNA (Fig. 5E). However, on transfection of the mammospheres 
with SOX2 siRNA, the IC50 reduced to 3 nM, indicating that reduced SOX2 expression could increase chemosen-
sitivity of the stem cell compartment of cancer cells (Fig. 5E).

tumor (NCM). (G) Differential expression of genes from Pax treated (+Pax, 2 nM) mammospheres of 
MDA-MB-231 cells compared to untreated (−Pax) mammospheres. The error bars represent standard error of 
the mean of 20 individual tumors from human patients (n = 20). Data are expressed as mean ± SEM of three 
independent experiments. Student’s t-test was used to calculate statistical significance. *p < 0.05, **p < 0.01 and 
***p < 0.001.
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Figure 4.  SOX2 is correlated to chemoresistance gene ABCG2 and EMT marker TWIST. (A) Higher expression of 
SOX2 and ABCG2 mRNAs in mammospheres from triple negative breast tumors compared to primary adherent 
cells from the same chemo-treated (CT) tumor (p < 0.001). (B) MDA-MB-231 cells showed a higher ALDH+ 
population in mammospheres compared to adherent cells. (C) Higher expression of both SOX2 and ABCG2 
was observed in mammospheres developed from MDA-MB-231 cells (p < 0.001). (D) Over-expression of SOX2 
in MDA-MB-231 cells led to increased expression of OCT4, NANOG and ABCG2 protein, along with robust 
formation of spheres. β-tubulin was used as the loading control. (E) Wound healing assays in MDA-MB-231 cells 
for 24 hours of Pax treatment (2 nM). Migration of treated cells compared to control after 24 hours of drug removal 
is shown in the bottom panel. (F) Migratory properties indicated by mRNA expression show up regulation of 
SOX2, OCT4, WNT, ABCG2, TWIST1, E-CADHERIN and down regulation of mesenchymal markers VIMENTIN, 
SNAIL, SLUG1, hZEB1 after Pax treatment of MDA-MB-231 cells. (G) Drug removal showed a decrease in 
the mRNA expression of all pluripotency genes along with E-CADHERIN and a simultaneous increase in the 
mesenchymal markers. TWIST1 expression remained high under both conditions.
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Figure 5.  SOX2 silencing decreases chemoresistance and increases paclitaxel sensitivity in breast CSCs.  
(A) Immunofluorescence of SOX2 in mammospheres developed from CT-TNBC treated with siRNA-SOX2 
as compared to scrambled controls. (B) Silencing SOX2 in CT-TNBC mammospheres showed decreased 
protein expressions of SOX2, OCT4, NANOG, ALDH1A1, and ABCG2. Si-SOX2-mammospheres also showed 
deceased sphere forming capacity as compared to scrambled control (Lower panel, 20X magnification). 
(C) Silencing SOX2 in Pax-treated (2 nM) MDA-MB-231 mammospheres results in decreased protein 
expression of OCT4, NANOG, ALDH1A1. SOX2 down regulation also showed degradation of Pax-enriched 
mammospheres. (D) Cell viability assay of MDA-MB-231 cells after Pax treatment showed 7 nM as the IC50 
dose. (E) Chemosensitivity assay of mammospheres silenced for SOX2 showed increased chemosensitivity 
to Pax compared to scrambled control. Student’s t-test was used to calculate statistical significance. *p < 0.05, 
**p < 0.01 and ***p < 0.001.
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Pax treatment confers TWIST1-independent reduction of invasiveness in SOX2-silenced triple 
negative breast cancer cells.  Although Pax treatment temporarily arrested MDA-MB-231 cell migration 
independent of TWIST1 expression, invasion was seen to resume after drug removal (Fig. 4G). In this context, we 
subsequently verified whether SOX2 silencing would have more lasting migration arrest effects on MDA-MB-231 
cells under similar conditions. Wound healing assays indicated that compared to the unsilenced cells, SOX2 
silencing significantly prevented migration of MDA-MB-231 in adherent cultures (Fig. 6A; p < 0.01). Reduced 
invasiveness was more prominent when SOX2-silenced cells were treated with Pax. Interestingly, migration of 
SOX2-silenced cells continued to remain arrested even after 24 hours of Pax removal (Fig. 6A) by almost 85%, 
unlike Pax removal from cells that were not silenced for SOX2 (Fig. 4G). To confer the magnitude of migratory 
arrest we also compared SOX2-silenced MDA-MB-231 with scrambled cells, both treated with Pax for 24 hrs 
followed by drug removal regimen and assessment of wound healing assay (Supplementary Fig. 5). qRT-PCR 

Figure 6.  SOX2 silencing inhibits migration in TNBC cells even after Pax withdrawal. (A) Wound healing 
assays showing reduced migration of si-SOX2-treated MDA-MB-231 cells compared to unsilenced cells 
after 24 hours. Inhibition of migration continued 24 hours after drug removal (2 nM PaX) in SOX2 silenced 
MDA-MB-231 cells. (B–D) qRT-PCR analyses of pluripotency, chemoresistance and EMT genes from each of 
the above sets. Data are expressed as mean ± SEM of three independent experiments. Student’s t-test was used 
to calculate statistical significance. *p < 0.05, **p < 0.01 and ***p < 0.001.
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Figure 7.  SOX2 silencing and Pax treatment of mammospheres prevent differentiation of CSCs and down 
regulate TWIST1. (A) A diagrammatic representation of the experiment depicting Pax-treatment of silenced 
spheres which were re-plated to grow as secondary spheres or as adherent cells after drug removal. (B) 
MDA-MB-231 mammospheres were treated with Pax (2 nM) and reseeded as secondary spheres after drug 
removal. qRT-PCR analysis for pluripotency, chemoresistance and EMT genes are shown. (C) Pax-treated 
MDA-MB-231 mammospheres re-seeded as adherent cultures after drug removal and real-time PCR analysis 
for the representative genes are shown. (D) Pax-treated SOX2-silenced mammospheres reseeded as secondary 
spheres after drug removal showed decreased expressions of SOX2, OCT4, WNT, ABCG2, VIMENTIN, SLUG, 
SNAIL1, hZEB1 and TWIST1. (E) Paclitaxel-treated SOX2-silenced mammospheres reseeded as adherent 
cultures after drug removal with (+) or without (−) retinoic acid (10 µg/µl). qRT-PCR analysis revealed 
increased E-CADHERIN expression and reduced expression of EMT markers including TWIST1. Data are 
expressed as mean ± SEM of three independent experiments. Student’s t-test was used to calculate statistical 
significance. *p < 0.05, **p < 0.01 and ***p < 0.001.
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indicated concomitant reduced expression of VIMENTIN, SLUG, SNAIL1 and h-ZEB1 with a very sharp 
increase in E-CADHERIN. Expression of TWIST1 however remained significantly high in the SOX2-silenced 
MDA-MB-231 cells, both during and post-Pax treatment (Fig. 6B–D).

SOX2 silencing together with Pax treatment reverses TWIST1 expression in breast CSCs.  The 
above observations were indicative of an apparent lack of involvement of TWIST1 during migration of both 
Pax-treated MDA-MB-231 cells and SOX2-silenced MDA-MB-231 cells. However, its expression in the CSC pop-
ulation under similar conditions necessitated clarification. Subsequently, unsilenced and SOX2-silenced spheres 
were collected after 24 hours of Pax-treatment, washed to remove the drug and replated to grow either as second-
ary spheres or as adherent cells (Fig. 7A). Pax-treated secondary spheres indicated higher expression of SOX2, 
WNT, OCT and ABCG2, and reduced expression of VIMENTIN, SLUG, SNAIL1 and h-ZEB1, indicating retention 
of self renewal properties. Expression of TWIST1 remained high in the spheres even after drug removal (Fig. 7B). 
Spheres that were grown under adherent conditions, in the absence or presence of retinoic acid19, differentiated 
and propagated as a monolayer, irrespective of retinoic acid (Fig. 7C). Expression analysis of these cells indicated 
elevated SLUG, SNAIL1, h-ZEB1 and VIMENTIN, reduced E-CADHERIN and a consistently high expression 
of TWIST1 (Fig. 7C). However, when SOX2-silenced mammospheres were subjected to similar conditions, the 
most prominent observation, in addition to disintegrated sphere formation, was down regulation of TWIST1 
expression in both secondary spheres and cells cultured under adherent conditions (Fig. 7D and E), along with 
the other EMT markers. Interestingly, the expression of E-cadherin was restored significantly in both secondary 
spheres and cells grown in monolayer, together with a more epithelial-like morphology of the cells and limited 
propagation potential (Fig. 7E).

Discussion
Despite recent advances in the treatment of triple negative breast tumors, the incidence of distant relapse remains 
high20, necessitating novel therapies to surmount the existing paradigm. Cancer recurrence has chiefly been 
attributed to the impetuous proliferation of CSCs which are not eliminated by conventional chemotherapy, pri-
marily because of elevated expression of drug efflux pumps21. In addition, the fact that chemotherapy enriches 
the CSC population within a tumor poses a greater threat for the patient22. Therefore, modulation of factors 
responsible for elevating expression of drug transporters points toward a more effective and complete cure for 
TNBC patients.

Screening a panel of factors known to regulate pluripotency, cell invasiveness/EMT, drug resistance and asso-
ciated signaling components in NSCs and brCSCs isolated from chemotreated tumors of TNBC patients revealed 
increased transcript levels of stemness markers, in particular SOX2. Several studies have indicated SOX2 as an 
important marker for stem and progenitor cells23, 24. Recently, SOX2 was found to act as an oncogene in some 
epithelial cancers25, promotes invasiveness of tumor cells in glioma26 and is an indicator of poor prognosis in 
patients with HNSCC27. SOX2 has also been linked to drug resistance in several studies28–31, though its precise 
role in triple negative breast tumors has not been elucidated till date. Since SOX2 expression was significantly ele-
vated in the chemo-treated patient samples, we assessed the involvement of SOX2 in increasing chemoresistance 
and migratory properties of brCSCs. Elevated expression of SOX2 correlated to higher ABCG2 expression in 
mammospheres from triple negative human tumors compared to primary adherent cells, additionally ratified 
by adherent (2D) versus sphere (3D) culture of MDA-MB-231 cells. Overexpressing SOX2 in adherent cells and 
mammospheres confirmed enhanced expression of stemness and drug-efflux markers with accelerated formation 
of robust mammospheres, affirming self-renewal and chemo-resistance properties of the brCSCs. On the other 
hand, silencing SOX2 in mammospheres, followed by paclitaxel treatment, to ascertain the effect of combinatorial 
therapy, could successfully inhibit mammosphere formation and obliterate persistence of stemness properties. 
Down regulation of SOX2 could additionally help overcome chemo-resistance of brCSCs, as indicated by reduced 
ABCG2 expression and increased sensitivity to paclitaxel.

The identification of epithelial-mesenchymal plasticity of brCSCs provided another level of complexity regard-
ing development of strategies to eliminate these lethal seeds of breast cancer32. In order to resolve the fate of 
brCSCs within a tumor prior to, during and after chemotherapy, we determined the association between SOX2, 
cell migration and expression of EMT markers. Wound healing assays revealed that paclitaxel was effective in 
arresting the migration of triple negative breast cancer cells associated with reduced expression of mesenchymal 
markers and up regulated E-CADHERIN expression. However, simulation of a post-chemotherapeutic condition 
created by drug removal from the treated cells resulted in restoration of migratory properties similar to control 
cells within 24 hours of Pax withdrawal. This finding may be implicated to the fact that Pax temporarily prevented 
cell migration, albeit defying the role of TWIST1, expression of which remained high. The fact that drug removal 
reinstated migration could be possible since the brCSCs which survived Pax treatment differentiated into cancer 
cells, as evident by down regulation of SOX2, and promoted cell migration after Pax withdrawal.

The success of this study unveiled when SOX2-silenced MDA-MB-231 cells were exposed to Pax. Although 
silencing efficiently retarded migration in the absence of Pax, restricted migration was more pronounced in the 
presence of Pax, confirming that silencing SOX2 together with Pax treatment was a more effective therapeutic 
possibility. Interestingly, unlike unsilenced cells where Pax removal restored migratory properties, migration 
continued to be restricted in SOX2-silenced cells even after drug removal. This further confirmed a more sus-
tained effect of the drug and possible prevention of metastasis even when conducive conditions resumed after 
chemo-treatment.

What was perplexing in these experiments was the persistently high expression of TWIST1 and its apparent 
lack of EMT-like properties during migratory arrest of MDA-MB-231 cells, even after paclitaxel treatment of 
silenced cells. Although TWIST1 has been reported to be one of the master regulators of invasiveness and EMT33 
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and resistant to microtubule-disrupting agents, including paclitaxel34, it is interestingly reported to be associated 
with stem cell maintenance and stemness properties35. Chemotherapeutic agents can increase TWIST1 expres-
sion in carcinoma cells, and cause drug resistance or decrease sensitivity to drugs like paclitaxel, vincristine, and 
taxol36. There is also evidence that expression of TWIST1 is regulated by SOX237. This also led us to infer that 
although prominently known to be one of the key promoters of EMT and invasiveness in a number of cancer 
types, the role of SOX2-dependent TWIST1 in maintaining stemness was more prominent when SOX2 expres-
sion was high in brCSCs. However, the precise mechanism underlying the resolution as to whether SOX2 binds 
to the TWIST1 gene promoter is still under investigation, and it is possible that TWIST1 is differently regulated 
in the presence and absence of SOX2, when other factors influence its EMT property.

Since SOX2 modulation could bring about an arrest in cell migration of MDA-MB-231 cells and have a sus-
tained effect even after drug removal, we elucidated its role in triple negative brCSCs by determining its effect on 
Pax-treated mammospheres that were re-seeded either as secondary spheres (3D) or as adherent (2D) cultures. 
This also further confirmed the impassiveness of TWIST1 as an EMT-promoting factor in triple negative brCSCs 
and defined its role in the survival of the brCSC population. Our study clearly indicated that SOX2-unsilenced 
mammospheres which survived Pax treatment possessed self-renewal property and gave rise to robust secondary 
mammospheres. When cultured as monolayer cells, demonstrated low expression of E-CADHERIN and high 
expression of mesenchymal markers. This indicated the inherent property of the residual brCSCs to differen-
tiate and migrate under favorable conditions, thereby simulating conditions of tumor recurrence. On the con-
trary, when SOX2-silenced Pax-treated mammospheres were grown as secondary spheres or as adherent cells, we 
observed down regulation of TWIST1 for the first time, along with elevated expression of E-CADHERIN, loss 
of self-renewal properties and gain of anti-migratory properties, as evident from significant down regulation of 
EMT markers.

Taken together, these data suggests that SOX2 and TWIST1 are major regulators of CSC features in human 
triple negative breast cancers. Specifically, based on our siRNA knockdown experiments and chemosensitiv-
ity assays, the SOX2-ABCG2-TWIST1 axis plays a key role in regulating chemoresistance and tumorigenicity 
in TNBC stem cells. Therefore, obliterating SOX2 expression specifically in brCSCs before or during chemo-
therapy is a possible approach to eliminate the brCSC population within a tumor, with a promise to prevent 
post-chemotherapy recurrences in future.

Materials and Methods
All methods were performed in accordance with the relevant guidelines and regulations. The experimen-
tal protocols were based on methods published in reputed journals and therefore approved by Department of 
Biotechnology, Government of India, Saroj Gupta Cancer Centre and Research Institute, India and University of 
Calcutta. All patient samples mentioned in this study were procured after obtaining written consent from them.

Cell lines and reagents.  Human breast cancer cell line, MDA-MB-231, was purchased from National 
Centre for Cell Sciences, India. Aldefluor reagent and collagenase-hyaluronidase mix were from Stem Cell 
Technologies (USA); HiPerfect transfection reagent and siRNA kit from Qiagen (USA); bovine insulin, epidermal 
growth factor, and paclitaxel from Sigma Aldrich (USA); B27 and hydrocortisone were from Life Technologies 
(USA); TRIzol® and superscript cDNA synthesis kit were purchased from Invitrogen (USA); SYBR green/Rox 
real time PCR kit was from Kapa Biosystems (USA); phycoerythrin (PE)-conjugated CD44 and fluorescein iso-
thiocyanate (FITC)-conjugated CD24 antibodies were procured from BD Biosciences, USA. All other antibodies 
were either from Abcam (UK) or from Santa-Cruz Biotechnology (USA).

Human breast tissue samples.  Normal and tumor breast tissues were obtained from Saroj Gupta Cancer 
Care and Research Institute (SGCC&RI), Thakurpukur, India, as per the Institutional Review Board, in accord-
ance with the Institutional Human Ethical Committee, SGCC&RI. All tissue samples were collected after pro-
curing informed consent from patients, the identity of who were not revealed by the Institute, except for their 
nationality, age, tumor type and status of treatment administered, that is, whether they were subjected to chemo-
therapy prior to surgery. The breast tumors were exclusively primary-site cancers that were either naïve or had 
been subjected to chemotherapy prior to surgery. Normal tissues were collected 6 cm away from or diagonally 
opposite to the tumor site by means of MRM (modified radical mastectomy) or from reduction mammoplasty 
cases. A total of 30 triple negative breast cancer patient samples have been described in this study. Our study 
primarily focused on triple negative breast cancers (TNBC; ER−, PR−, HER2/neu−), based on their prevalence 
in patients who are treated at SGCC&RI, and confirmed by immunohistochemistry reports of the Pathology 
Division of SGCC&RI. To simulate similar conditions, subsequent studies were carried out in MDA-MB-231 
cells.

Histology and pathological grading.  Histologic type of tumors was determined by pathologist accord-
ing to WHO classification of breast tumors and graded by modified Bloom-Richardson grading system38. 
Immunohistochemical testing for ER, PR, HER2/neu was applied on all cases. HER2/neu-positive slides were 
scored based on the intensity and percentage of positive cells on a scale of 0 to 3+ . Cases were reported 0 (nega-
tive) if no staining or membrane staining in less than 10% of invasive tumor cells was seen.

Procuring single cell suspension from human breast tissues.  Tissues were collected in DMEM con-
taining antibiotics/antimycotics and dissociated enzymatically using 1 mg/ml collagenase-hyaluronidase mix at 
37 °C for 16–18 hrs. Cells were separated by centrifugation, strained through cell strainers and either seeded for 
mammosphere culture or sorted after viability check39.
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In vitro mammosphere culture from human tissues.  After enzymatic digestion, cells were seeded at 
2.5 × 104 cells per well in 6-well ultralow attachment plates in DMEM/F12 with 5 μg/mL bovine insulin, 20 ng/mL 
recombinant epidermal growth factor, B27 supplement, and antibiotic-antimycotic mix. Mammospheres which 
formed within 7 days were photographed. For serial passaging, mammospheres were enzymatically dissociated 
into single cells and re-seeded in low attachment plates40. Sphere formation efficiency was calculated by dividing 
the total number of spheres formed by the total number of live cells seeded multiplied by hundred.

Culture of mammospheres from human cell line.  MDA-MB-231 cells were cultured in DMEM sup-
plemented with 10% fetal bovine serum, 50 U/ml penicillin/streptomycin and 2 mM L-glutamine. For 3D sphere 
culture, cells grown as adherent cultures were disassociated with trypsin/EDTA, washed with PBS and seeded as 
described above41.

Detection of ALDH+ population by flow cytometry.  Aldehyde dehydrogenase (ALDH) enzyme activ-
ity in viable cells was determined using a fluorogenic dye based aldefluor assay. Briefly, 1 × 106 cells/ml cells were 
suspended in aldefluor assay buffer containing ALDH substrate (bodipy-aminoacetaldehyde) and incubated for 
45 mins at 37°C. As a reference control, the cells were suspended in buffer containing aldefluor substrate in the 
presence of diethylaminobenzaldehyde (DEAB), a specific ALDH1 enzyme inhibitor. The brightly fluorescent 
ALDH1-expressing cells (ALDH1high) were detected in the green fluorescence channel (520–540 nm) of FACS 
Aria III (BD Biosciences) and both ALDH− and ALDH+ populations were sorted out42.

Immunophenotyping with CD24 and CD44.  MDA-MB-231 cells were resuspended in buffer and incu-
bated in the presence of antibodies against PE-conjugated CD44, FITC-conjugated CD24, and their correspond-
ing isotype controls. The stained cells were processed using flow cytometry (BD FACSAria™ III, BD Biosciences, 
USA). The results were analyzed using BD FACS Diva v6.1.3/v.7 softwares.

RNA extraction and real-time RT-PCR.  Total RNA was extracted from sorted cells and mammospheres 
using TRIzol®. Reverse transcription was performed using the Superscript III cDNA synthesis kit. Gene expres-
sion levels relative to those of 18 S were assessed using qRT-PCR and SYBR-green chemistry. Primer sequences 
and cycling conditions are shown in Table 1. The reactions were run in triplicates and the generated products were 
analyzed with the step-one analysis software. The data were evaluated as 2−ΔΔCt (cycle threshold) values. The 
results were expressed as normalization ratio of the relative quantities of the target mRNAs to those of the control, 
and the fold difference to the control was used for the comparison.

Protein extraction and western blot analysis.  The sorted CSCs were collected in radioimmunoprecip-
itation assay buffer containing protease inhibitor cocktail. Proteins separated by SDS-PAGE and transferred onto 
PVDF membrane were probed with primary antibodies. Blots were subsequently incubated with secondary anti-
bodies, and bands detected using chemiluminescence. Blots were analyzed using the Gel Doc XR type imaging 
system (BioRad). The intensity of bands was quantified using ImageJ software.

Wound healing migration assay.  MDA-MB 231 cells were seeded in 6-well plates and cultured to 80–90% 
confluence. Confluent monolayers were scraped to generate scratch wounds and incubated at 37°C for 24 hrs with 
media containing paclitaxel (2 nM). Images were captured at 0 hour and 24 hours using a ZEISS ProgRes CT3 at 
20X magnification from five randomly selected fields in each sample. The wound areas were calculated by NIH 
ImageJ software and the distance between the opposing edges of the wound was measured in micrometers43.

Gene Forward primer 5′→3′ Reverse primer 5′→3′
PCR 
conditions

OCT4 ATCGAGAACCGAGTGAGA ACACTCGGACCACATCCTT 52°C; 40 cycles

SOX2 GGGAAATGGGAGGGGTGCAAAAGAGG TTGCGTGAGTGTGGATGGGATTGGTGT 61°C; 40 cycles

NANOG TCCTCCTCTTCCTCTATACTAAC CCCACAAATCACAGGCATAG 52°C; 40 cycles

WNT GGTTCCATCGAATCCTGCAC GCCTCGTTGTTGTGAAGGTT 53°C; 40 cycles

BMI1 GAAATGAAGAGAAGAAGGGA CCGATCCAATCTGTTCTGGT 53°C; 40 cycles

ALDH1A1 GTTGTCAAACAGCAGAGCCGG TCTTTCCTCCAACTTGCAGC 56°C; 40 cycles

ABCG2 CAGGTGGAGGCAAATCTTCGT TCCAGACACACCACGGATAAA 53°C; 40 cycles

hTERT CGGAAGAGTGTCTGGAGCA GGATGAAGCGGAGTCTGGA 61°C; 40 cycles

VIMENTIN TACAGGAAGCTGCTGGAAGG ACCAGAGGGAGTGAATCCAG 64°C; 40 cycles

TWIST TCTTACGAGGAGCTGCAGAC CTACCGTTCGACGTCGATA 62°C; 40 cycles

SNAIL GGAAGCCTAACTACAGCGAGCT ACGGTTACGAGTAGACCCT 65°C; 40 cycles

SLUG CTGGTCAAGAAGCATTTCAACGCC ATGGGTTACCGGAGAGAGGAGAAA 71°C; 40 cycles

hZEB1 CAATGATCAGCCTCAATCTGCA ACCCTAGTTGGTGGTTACC 67°C; 40 cycles

E-CADHERIN GGCGCCACCTGGAGAGA TGTCGACCGGTGCAATCTT 64°C; 40 cycles

18 S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 53°C; 40 cycles

Table 1.  Primers and PCR conditions used for qRT-PCR.
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Flow cytometric analysis of DNA content of breast cancer cell lines and mammospheres.  
Pax-treated and untreated MDA-MB-231 cells and day 7 spheres were collected and fixed with 70% ethanol for 
1 hr at 4°C. Following fixation, cells were permeabilized with 0.1% Triton X-100 containing RNase A (20 µg/ml), 
washed and resuspended in PBS containing propidium iodide (50 µg/ml) and subjected to flow cytometry using 
BD Accuri C6 (BD Biosciences, USA). The data was analyzed using the BD Accuri C6 software.

Microarray analysis.  After quantification and qualitative analysis of total RNA, 1 µg of RNA was reverse 
transcribed using single strand cDNA synthesis kit. Relative expression of genes belonging to human CSCs 
was determined by quantitative PCR using SYBR green based custom designed human PCR array (PAHS-
176Z; Human Cancer Stem Cells RT2 profile PCR array). Data were analyzed using ΔΔCt method provided 
by SA Biosciences, USA, with normalization of pluripotency genes expression by geometric mean of five 
housekeeping genes, viz., Glyceraldehyde-3-phosphate dehydrogenase, beta-2-microglobulin, hypoxanthine 
phosphor-ribosyltransferase 1, ribosomal protein large P0, beta-actin44.

Scanning electron microscopy.  Mammospheres were collected by gentle centrifugation and fixed in 
2.5% glutaraldehyde for 2 hrs at 4°C. Fixed spheres were washed with 0.2 M phosphate buffer and subsequently 
dehydrated through ascending grades of ethanol, placed in chilled acetone for 10 mins, and air dried overnight. 
After critical point drying, the spheres were coated with platinum in a Sputter Coater (Quarm QCES) and finally 
viewed by SEM (Zeiss EVO-18-Special Edition, Germany).

Immunofluorescence staining.  Staining of intact spheres was done by fixation onto coated slides with 
1:1–20 °C pre-chilled Methanol:Acetone. After permeabilization, slides were incubated with primary antibody 
overnight at 4°C45. Fluorophore conjugated-secondary antibody was added and incubated for 60 mins at room 
temperature. Slides were subsequently stained with DAPI and mounted using antifade, Images were documented 
using confocal laser scanning microscope (Olympus) and analyzed using FV-10 ASW 3.0 viewer image browser.

Sox2 overexpression.  Using a retroviral transfection system with the PT67 amphotropic packaging cell 
line, pBabeSOX2-neo and pBabe control-neo plasmids were stably transfected into MDA-MB-231 cells and 
spheres derived from human normal and tumor tissues to generate SOX2-overexpressing and control cell clones, 
respectively.

Small interfering RNA transfection.  RNA interference was performed using HiPerfect Transfection 
Reagent. Human breast CSCs were grown by plating 2 × 103 cells/well in 6-well low-attachment plates. After 24 
hrs, cells were transfected with 30ng siRNA against SOX2 or non-targeting siRNA (negative controls). The cells 
were harvested after 48 hrs and processed for subsequent experiments.

Pax - chemosensitivity assay.  MDA-MB-231 cells and primary spheroids were grown in 96-well plates. 
Spheres were silenced for SOX2 expression, following which the cells/spheres were treated with paclitaxel at 
different concentrations (1 nM to 7 nM). Twenty-four hours later, 20 μL of 3-(4,4-dimethylthiazol-2-yl)-2,5-diph
enyltetrazolium bromide (MTT) solution (5 mg/mL in PBS) was added to each well, and the plate was incubated 
at room temperature for 3 hrs. Absorbance was measured on a SpectraMax 190 device (Molecular Devices) at a 
wavelength of 570 nm.

Statistical analyses.  SPSS version 16.0 (SPSS, Inc., Chicago, IL, USA) was used to analyze the data. All data 
are expressed as the mean values or as the percentages of control values ± standard error of the mean depend-
ing on the experiments performed. Comparisons between two groups were calculated using Student’s t-test 
(two-tailed, independent). P < 0.05 was considered to indicate a statistically significant difference. Densitometric 
analyses of western band were quantified by ImageJ software (imagej.nih.gov/ij) and P value was determined by 
Student’s t-test in GraphPad software. A value of p < 0.05 was considered statistically significant. Cell population 
after FACS analyses was represented by bar diagrams.
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